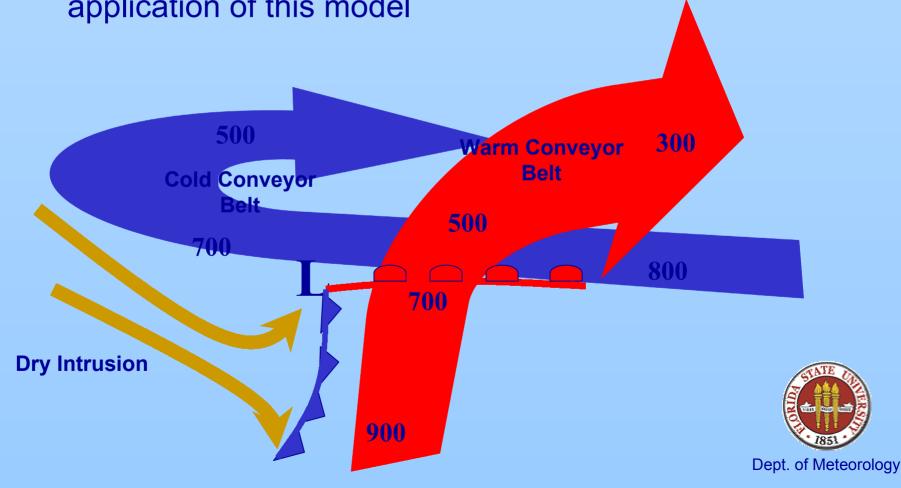
An Investigation of Mechanisms by which Wave Cyclones Transport Pollution to the Western Pacific

Spring 2001 NASA-GTE-TRACE-P

John Hannan
Henry Fuelberg
Florida State University
Dept. of Meteorology


Introduction and Motivation

- Study motivated by need to understand complexities of air flow through Pacific cyclones
 - Pollution transport from Asia during late winter/early spring intimately related to transient mid-latitude cyclones and their associated circulations
 - Conveyor belts, (prefrontal) convection, frontal circulations, topographic effects, etc.
 - Greater understanding of processes and interaction among scales needed for most accurate interpretation of chemical data
 - Very interested in the intricacies of air flow within these systems

Air Flow in Mid-latitude Cyclones

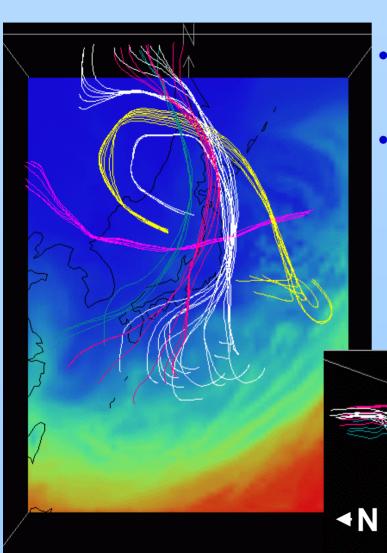
Simplified 3 air stream model (after Carlson, 1980)

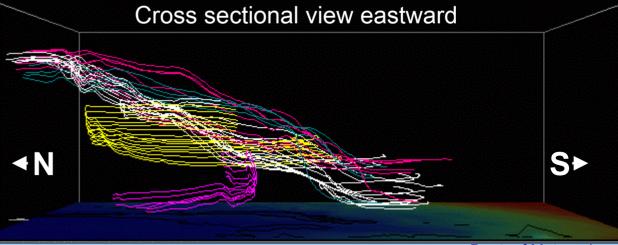
More complex in actuality; much debate about application of this model

Air Flow in Mid-latitude Cyclones

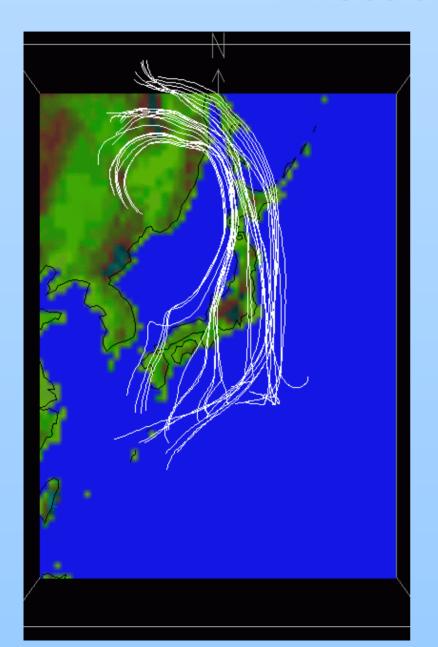
- Recent treatment of conveyor belts:
 - Modifications of classic model to include other air streams.
 - Particularly cyclonic appendages of both the warm and cold conveyor belts
 - Young, 1989; Bader et al., 1995; Cooper et al., 2001
 - "Fanlike" spreading of air streams rather than conveyor belts.
 - No basis for use of conveyor belt terminology
 - Kuo et al., 1992
 - Air stream boundaries and "coherent ensembles" of trajectories identified with numerical techniques.
 - Removes subjectivity from analysis process
 - Cohen and Kreitzberg, 1997; Stohl, 2001

Conveyor Belts


- Synoptic scale features lengthwise
 - 1000's km
- Mesoscale-synoptic scale in width
 - 100's km
- Shallow vertical extent
- Past studies have employed data of resolutions which may not be suitable for accurate depiction of these flows
 - i.e. Too coarse in the horizontal or vertical, insufficient temporal resolution


Conveyor Belts

- We will employ mesoscale numerical modeling capabilities to investigate the suitability of the conveyor belt description of air flow with respect to cyclones during TRACE-P
 - Higher resolution simulations than in previous studies
 - Sub 20 km horizontal grid spacing
 - High resolution boundary layer and mid-tropospheric vertical layering
 - Hourly model output particularly important for trajectory calculations w/r/t small spatial/temporal features


Flows Within March 04 Cyclone

- Evidence of cyclonic extensions of both warm and cold conveyor belts
- Classic upper-level anticyclonic path of warm conveyor belt only
 - Based on wind data generated by MM5 at 25 km horizontal resolution

Effect of Terrain

- Initial simulations indicate a splitting of the warm conveyor belt as it travels over Japan
- Similar patterns over higher elevations in Asia

Cases for Simulation

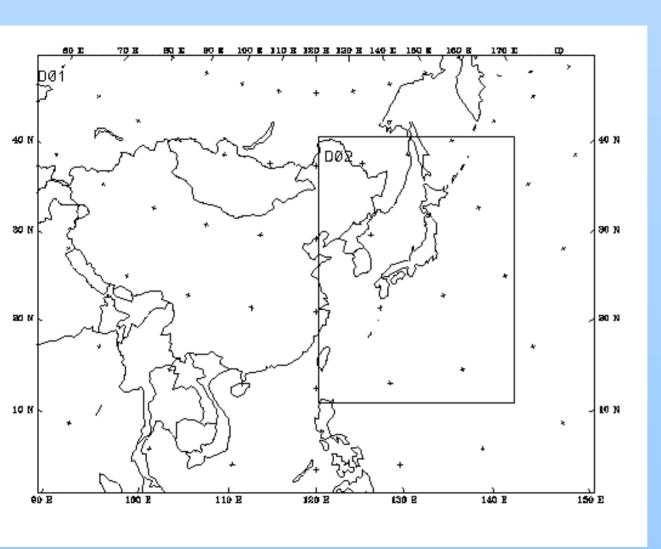
- Selection of cases
 - 6 cases from 4 March 4 April 2001
 - Based on cyclone locations w/r/t aircraft positions
 - Sampling of various sectors of cyclones in different stages of development
- Case specifics:
 - 1) March 04 Guam to HK transit
 - Cold frontal crossing
 - WCB, post-cold frontal BL outflow
 - 2) March 07 HK #1, March 09 HK #2
 - Cold frontal crossing
 - Post frontal outflow on day 2

Cases for Simulation

- Case specifics (cont.):
 - 3) March 17 HK to Okinawa, March 18 Okinawa to Yokota
 - Cold frontal crossing w/ sampling on consecutive days
 - 4) March 21 Yokota #1
 - Multiple frontal crossings
 - 5) March 31 Yokota #5
 - Dual lows, recirculation
 - 6) April 04 Yokota to Kona transit
 - Cold frontal crossing
 - Aged air mass

Model Simulations

- PSU/NCAR MM5 Version 3
- Non-hydrostatic
 - Reduction of vertical pressure gradient force errors at smaller grid resolutions
- Terrain-following vertical sigma coordinate
 - Variable vertical grid spacing with higher resolution in the boundary layer and midtroposphere



Model Simulations

- Two-way nested grid configuration
 - 180, 60, 20, 6.67 km likely
 - Information shared between nests
- Initialized with ECMWF global analyses
- Physical and dynamical parameterization schemes chosen according to grid resolution
- Simulations of 48 hours

MM5 Domain

- Domain
 configuration
 from a particular
 test simulation
 - Animations
- Outer grid 75 km
- Inner grid 25 km
- Encompasses region of cyclone development

Meteorological Products

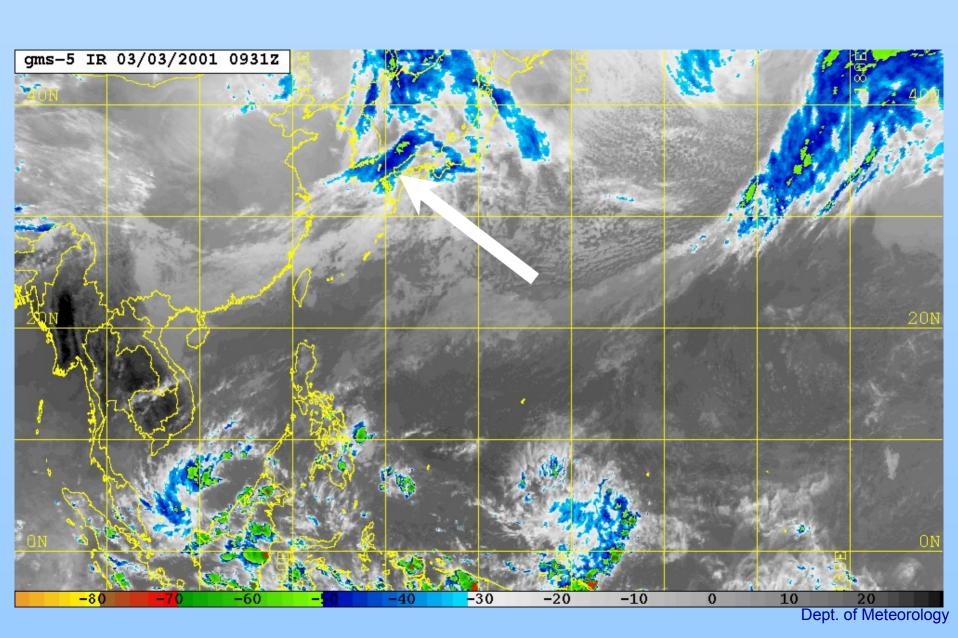
- Many parameters and products produced by MM5 and various post-processing applications to aid in study, including:
 - Directly from model:
 - Air mass indicators such as PV, potential temperature, humidity variables
 - Wind data, convective/non-convective precip, etc.
 - Calculated from model output:
 - Kinematic air trajectories, contraction rates & air stream boundary information (Lyapunov exponents)
 - Additional met data
 - Satellite imagery, aircraft data

Integration of Met and Chemistry

- Concurrent meteorological and chemical data provides a much more comprehensive understanding of transport processes than when used alone.
- Chemical measurements serve as a constraint of meteorological data (and vise versa).
 - Do wind data and chemistry match up?
 - Do transport processes explain chemical signatures?

Objective Specifics

- 1) Determine if the classic conveyor belt model accurately depicts flow patterns within cases of interest
- 2) Identify roles of various transport mechanisms in modeled cyclones as they relate to pollution transport to the free troposphere
 - Trajectories, trajectory products, ascent/descent criteria, quasi-conservative meteorological quantities along trajectories (e.g., PV, q, θ)
 - GOES-8 and GOES-10 imagery
 - Chemical information



Objective Specifics

- 3) Examine the importance of scale interactions as they relate to chemical transport
- 4) Examine the time evolution of large-scale transport processes and the exchange of pollutants among adjacent systems.
 - Anticyclonic return flow into WCB of upstream cyclones
 - Aged air mass sampling
 - Extension (in time) of trajectory products

IR - 2001 0303 0931 UTC

Current Status

- Cases to be simulated have been chosen
 - Initial model simulations are being conducted
 - Grid configurations, physical and dynamic parameterizations
 - Comparisons with ECMWF analyses, GOES-8 and 10 satellite imagery
 - Proper placement/propagation of features etc.
 - Minimization of boundary error influence on simulations

Next:

- Model simulations and initial data analyses
- High resolution trajectories from MM5 data
- Initial chemical/met analyses

An Evaluation and Intercomparison of CO from Chemical Transport Models

Chris Kiley
Henry Fuelberg
Chemical Modelers

Objectives

- Few intercomparisons in the literature
 - Jacob, D.J. et al. 1997
 - Rasch, P.J. et al. 2000
- Relate model-derived CO to aircraft-derived CO for as many flights as possible
- Consider initial CO analyses--not forecasts
 - Not interested in quality of weather forecasts
- Hypothesis: A model's meteorology will affect its resulting CO values
 - Deep Convection
 - Boundary Layer Processes
 - Conveyor Belts

Several Global and Regional Models

- Greg Carmichael--Univ. Iowa
- Daniel Jacob/Paul Palmer--Harvard
- Celine Mari--Aero-France
- Ken Pickering/Dale Allen--Univ. Maryland
- Brad Pierce--NASA Langley
- Michael Prather--U. Calif. Irvine
- Martin Schultz--Max Planck

Details

- Many details to decide at Break Out Session
 - Which flights to examine?
 - What CO inventories being used?
 - Transfer of data to FSU
 - Etc.
- We are very open to suggestions

